注册 登录

培训与研讨会

大恒图像和合作伙伴们始终站立在时代的前沿,我们会定期举办交流会来促进大家的沟通交流

技术支持

请先查看 这里 能不能解决您的问题,如果不能,请通过以下联系方式与公司技术人员取得联系。

大恒图像-机器视觉专家

电话:86-10-82828878    
传真:86-10-82563343   
地址:北京市海淀区苏州街3号大恒

   科技大厦北座12层(100080)

索取产品报价 咨询技术问题

深度学习技术介绍及应用-2

2018-07-09

一、 准备样本

我们以药片缺陷检测为例,假设样品可以分为三类,正常(Normal)、破损(Crack)以及脏污(Contamination)。我们需要根据样本类别名称创建3个文件夹,并将分割好的样本分别放置到相应文件夹中。

二、 修改例程

1、 打开例程

打开HALCON的集成开发环境HDevelop,在“文件”菜单中单击“示例程序”并选择“深度学习”中的第一个例程。

如果环境配置成功,例程是可以直接运行的,感兴趣的朋友也可以先浏览一下例程的运行效果。

2、 备份例程

将例程另存为到样本数据文件夹同级目录

3、
修改路径

1)修改样本路径为pilltest文件夹,并填充对应的子文件夹名称(类别名称)

2)修改预处理图像保存路径为pill_preprocessed(可随意命名)


4、 修改图像预处理函数

1)    
训练图像预处理


2)     分类图像预处理


三、 训练测试网络

1、  执行训练


点击“执行”按钮,会出现一些水果的图像,不用理会他们,毕竟我们改的是人家的例程,为了快捷起见我们并没有注释旧的样本展示代码。


继续点击“执行”会出现训练曲线图。如果在此期间弹出显存不足的错误,请大家适当调整单批样本的训练数目

                 显存不足错误信息

训练的时间跟你的样本数目和电脑配置有关,我们以NVIDIA 1050的显卡、i7CPU为例,如果你的样本在2000以内,一般20分钟左右就可以训练完毕。如果你的样本比较大,比如8000以上,那你可以先去睡一觉了,4小时以后再回来。图中横坐标为训练代数,纵坐标为训练误差。下面奉上小编的训练结果。


上图为从第0代得到第100带的训练曲线,我们可以看到最终训练和校验误差均为0。再来看看混淆矩阵,除了主对角线上其他位置也都是0。如果你也获得了跟我同样的处理结果,那么恭喜你(^_^),你的分类器已经可以正常运作了。



       分类器训练好后就到了我们享用劳动成果的时候,继续点击“执行”或者“F5”就可以看到处理结果。

 

处理结果

  


关于深度学习技术的介绍及应用我们就先聊到这里。希望本文能够让大家对深度学习有一个初步的认识,并能够快速的搭建自己的深度学习网络。

 

 以上内容为大恒图像原创文章,如转载请注明出处。 

 

 

关注我们

电话:86-10-82828878
传真:86-10-82563343
北京市海淀区苏州街3号大恒科技大厦北座12层(100080)
© 2014 中国大恒(集团)有限公司北京图像视觉技术分公司
京ICP备05010014号